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Abstract: A profiling tool is used to identify which functions in some
arbitrary program are accumulating the most time and thus are candidates for
optimisation. Existing profiling tools analyse pre-generated profiling data off-
line, after the program under measurement has terminated. Often it would be
useful to be able to examine the profile of a program while it is still executing.
With a traditional profiling tool this data is presented in a textual form. If
this method were applied to the proposed profiling tool however, the quantity
of continually changing information would be overwhelming for most people to
manage. Alternatively the data may be represented visually — often a more
effective means of communicating information. This project aims to develop
a tool capable of profiling a running process and rendering a call graph which
incorporates the profile interactively.
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1. Introduction

A profiler is a tool used to generate a profile for some run of a program. This
profile indicates to the user where the program under measurement spent its
time. Additionally the profile provides data regarding the number of times each
function is called and by what. More information may be calculated, such as call
frequency.

Often a program is too complex to analyse and optimise at source level. A profiler
helps here by identifying which functions consume the most CPU time and hence
are the best targets for optimisation. More formally, this is known as Amdahl’s
law, postulated by Gene Amdahl in 1967.

soverall =
1

(1 − F ) + F
sopt

Figure 1.1: Amdahl’s law

Here F is the fraction of a problem that can be optimised and sopt is the speedup
obtained by optimising that fraction. A profiler is used to identify the largest
F in the program under measurement. A profiler can also be used to a limited
extent as a debugging tool; sometimes a bug may manifest itself through either
an excessive number of function calls or perhaps too few. This data is available
from the profiler.

A traditional profiler operates as follows:

• Compile the program to be measured with some instrumentation.

• Execute the program to be measured to termination.

• Run the profiler on the profile data produced.

An important point here is that only the code actually executed has profile data
generated for it. Therefore different runs of a program will generate different
profiles. It is essential to bear this in mind when interpreting the results of a
profiler.

A profiler is capable of producing two main distinct output forms, the flat profile
and the call graph. A flat profile is simply a list of the functions in a program
and their profiling details. This is most useful when the user wants to know the
suboptimal sections of code in some program. A call graph is a graph in which

1



2 1. INTRODUCTION

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

32.85 0.80 0.80 2511552 0.00 0.00 RotatePointAroundVector

19.42 1.26 0.47 103 4.56 7.38 renderPolys

11.98 1.55 0.29 1255776 0.00 0.00 persProject

9.92 1.79 0.24 206 1.17 5.02 rotatePolyList

1.65 2.33 0.04 85344 0.00 0.00 VectorNormalise

0.62 2.36 0.01 21 0.71 2.62 calculatePolyNormals

0.41 2.37 0.01 82944 0.00 0.00 B

0.41 2.38 0.01 32 0.31 0.62 tesselatePatch

Figure 1.2: Example flat profile produced by gprof

graph nodes represent functions and graph edges represent function calls. Figure
1.2 shows an example flat profile output.

1.1 Existing profiling tools

The GNU project contains a wide range of development tools, one of which
is gprof [1] — the GNU profiler. gprof is the lowest level profiler available on
GNU based platforms. To compile a program (hereafter referred to as the client
program) with profiling instrumentation, the option -pg must be added to the
GCC command line (figure 1.3).

gcc -pg -o a.out main.c

Figure 1.3: Compiling a program for analysis with gprof

This adds instrumentation (code whose sole purpose is to gather profiling data) to
the program being compiled. gprof and GCC are very tightly integrated such that
GCC is capable of compiling code with instrumentation on a line by line basis.
This allows gprof to produce a third output form, the annotated source listing.
This is a source code listing with each line annotated by the number of times
it was called. Typically other profiling tools cannot provide this facility because
the granularity of their instrumentation is at the function call level, rather than
per line.

When a program compiled with gprof instrumentation terminates, it writes a file
gmon.out to the current directory. This file contains all the profiling data in a
binary form. The gprof binary is then used to interpret this data and present
it in a more human readable form. gprof is a very mature, flexible profiler and
it supports a large number of platforms. Tight integration with GCC means
that gprof is able to generate CPU timing data accurately. gcc -pg produces
a binary that will sample the program counter in order to time stamp specific
function events. The advantage of this is that the program being profiled is
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unaffected by external load placed on the host computer. On the other hand,
this approach ensures that the profile produced is completely unaffected by any
asynchronous I/O that may occur. For example a file I/O call may block for an
arbitrary length of time, but since the program counter is used for measurement,
the profile produced will show this function as having used only a small amount
of time. gprof is capable of profiling source code compilable with the C, Pascal
or Fortran77 frontends. gprof’s only major shortcoming is its inability to profile
multithreaded and multiprocess binaries.

The FunctionCheck [2] profiler was created partially to alleviate this problem and
others. GCC provides no direct extension mechanism for dealing with profiling
instrumentation besides hacking the GCC source itself. It does however provide
a facility to instrument functions at the function call level. This is enabled by
supplying the -finstrument-functions on the GCC command line. Thereafter
an instrumentation function is called on client function entry and client function
exit. These instrumentation functions are written to gather profile data for some
program.

FunctionCheck is a very capable profiler. Most importantly it handles multi-
threaded programs by maintaining multiple call stacks for each separate execu-
tion thread. In addition to the function call profiles generated, FunctionCheck
maintains a memory profile which tracks calls to malloc and free. The data gar-
nered by this may be used to detect memory leaks (dynamically allocated memory
which is never freed) or other anomalous memory allocation.

FunctionCheck consists of two main components; a client library and an analysis
program. Usage of FunctionCheck proceeds as follows:

• Compile the program to be measured with -finstrument-functions and
link it with the FunctionCheck client library fnccheck.

• Execute the program and utilise any features of interest. Terminate the
program.

• Run the program fncdump on the profile generated by step 2. This is
analogous to running gprof on a gmon.out file.

In addition to the usual flat profile and call graph output forms FunctionCheck
provides a number of additions. The cycles detection output form is used for
illustrating cycles in the call graph, for example recursive and mutually recursive
functions. The min/max time output form is used for showing the minimum
and maximum time spent in each function. The function details output form
provides data regarding the filename and line number where functions are lo-
cated. The memory leaks and blocks output forms present information about
the memory profile generated. Finally the multi-threads/multi-processes output
form details when and how a program forked or spawned child threads. The extra
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functionality provided by FunctionCheck comes at a price. Firstly since the GCC
instrumentation functions are utilised, FunctionCheck is not able to provide the
per line profiles that gprof is capable of. This means that FunctionCheck is in-
capable of producing an annotated source listing. Secondly FunctionCheck uses
the function gettimeofday to retrieve the time at which function events occur.
This function returns real time so the accuracy of the profile is at the mercy of
the operating system scheduler to a limited extent.

This problem is difficult to overcome without somewhat lower level interaction
with the operating system. A related problem is solved by the hrprof [3] project.
Instead of using gettimeofday or similar real time functions, hrprof uses the Pen-
tium time stamp counter register to count individual clock cycles. Data gathered
is still real time in nature as the profiler is no more aware of underlying process
virtual time than other profilers, but it is inherently finer grained. hrprof’s in-
strumentation is very similar to FunctionCheck’s. In contrast to FunctionCheck
however, hrprof is designed to be a drop in replacement for the gcc -pg stage when
using gprof. hrprof writes a gmon.out profile file that is 100% binary compatible
with gprof. In essence hrprof represents a slightly more fine grain data gathering
process to gprof, rather than a complete profiler. The obvious disadvantage of the
approach taken by hrprof is than its time stamping method is highly architecture
and operating system specific - not every CPU provides the required facilities nor
does every operating system provide the means for accessing them.

1.2 Motivation

All of the profiling tools examined share one thing in common - the analysis
stage of profiling is performed entirely off-line on pre-generated profiling data.
An alternative approach to this is to analyse the data produced in real time
while the client program is still executing. The ability to observe the profile
of a program in real time implies a much greater degree of interactivity for the
user. In other words the user is able to react to certain profile characteristics
much faster than is possible with the run, analyse, run, analyse profiling cycle
of the traditional profiler. Clearly however, the overhead imposed by such a tool
is greater than an equivalent off-line profiler since the analysis stage is being
performed in parallel with the run of the actual program. Additionally this
analysis overhead is not necessarily a constant across the entire run of a client
program so the accuracy of the data produced is inherently less accurate than
with an off-line profiler. Nevertheless the development of a real time profiling
tool presents many interesting challenges and has the potential to be a genuinely
useful development tool.

The interactive nature of a real time profiling tool means that any data produced



1.2. MOTIVATION 5

is variant over time and as such there is a significant challenge simply in providing
a means to present this data to the user in an efficient, comprehensible manner.
One way of doing this is to combine the flat profile and call graph into a single
visual representation. The thinking behind this approach is that humans are
congenitally better equipped at interpreting data when it is represented pictorially
or graphically. This is epitomised by the often over used adage, a picture is worth
a thousand words. Figure 1.4 emphasises this point. A graphically visualised call
graph has potential uses out with profiling. Often a call graph may be useful in
learning the structure of a complex code base. This data can easily be generated
by gprof, but it remains in a relatively intractable textual form. The name call
graph itself suggests that a graphical representation will be more intuitive that
its textual equivalent.

Some previous work has been done in the area of call graph visualisation, but
generally only involving static call graphs and not incorporating profile data. The
project closest to this report is the Call graph drawing interface[4]. This small
project is an interface to convert the call graph data generated by gprof into a
form VCG [5] is able to understand. VCG is a graph drawing tool specifically
designed for drawing many of the graphs involved in compilation and compiler
development. The graph produced is 2D only and consequently is only really
useful for small call graphs. Additionally the graph does not expose any infor-
mation about the profile other than the call graph itself. Petter Reinholdtsen
wrote a perl script[6] to perform much the same task, albeit with a daVinci [7]
interface as well as VCG. This also indicates a minimal amount of profile data
embedded in the graph itself, but ultimately it still suffers from the spatial limi-
tations of a two dimensional coordinate system. KProf [8] is a front-end to gprof
based on the KDE desktop project. It is a very mature GUI based tool but it
offers little over gprof itself apart from a GraphViz [9] back-end to render call
graphs like the other tools mentioned here. KCachegrind [10], also based on the
KDE desktop project, is a front-end to Cachegrind which is in turn a part of
the Valgrind [11] project. Valgrind is a CPU virtualisation program primarily
intended for memory tracing and debugging. As a side effect, it is also suitable
as a profiling tool. The most attractive feature of Valgrind is that in order to
profile some program no re-compilation is necessary since all the instrumentation
takes place inside the virtualisation. Currently the virtualisation doesn’t have
implementations for certain SIMD instructions like MMX, so binaries compiled
for more recent architecture generations may have problems. Additionally there
is the obvious disadvantage that Valgrind currently only virtualises the x86 plat-
form, so it requires an almost complete re-implementation in order to be ported
to other platforms. Nevertheless Valgrind/Cachegrind is an elegant solution for
memory analysis. KCachegrind introduces a patch to Cachegrind to generate
call trees (as opposed to call graphs) which are visualised using a coloured tile
mechanism where tile size is proportional to CPU time expended.
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granularity: each sample hit covers 4 byte(s) for 1.92% of 0.52 seconds

index % time self children called name

<spontaneous>

[1] 57.7 0.00 0.30 main [1]

0.00 0.28 17/17 transformAndRenderPolys [2]

0.01 0.01 32/32 tesselatePatch [9]

0.00 0.00 1/1 buildColourTable [16]

0.00 0.00 1/1 initPolys [18]

0.00 0.00 1/1 parseFile [19]

0.00 0.00 1/1 translationToCOM [21]

0.00 0.00 1/1 drawInstructions [17]

0.00 0.00 1/1 shutdownPolys [20]

-----------------------------------------------

0.00 0.28 17/17 main [1]

[2] 53.8 0.00 0.28 17 transformAndRenderPolys [2]

0.04 0.16 34/34 rotatePolyList [3]

0.05 0.03 17/17 renderPolys [6]

-----------------------------------------------

0.04 0.16 34/34 transformAndRenderPolys [2]

[3] 38.5 0.04 0.16 34 rotatePolyList [3]

0.16 0.00 414528/414528 RotatePointAroundVector [4]

-----------------------------------------------

main

buildColourTable

tesselatePatch

parseFile

shutdownPolys

translationToCOM

initPolys

drawInstructions

transformAndRenderPolys

VectorCompare

B

renderPolys persProject

rotatePolyList RotatePointAroundVector

Figure 1.4: Example call graph extract produced by gprof and equivalent graphic
representation
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The primary motivation for this project stems from the fact that there simply
isn’t anything similar already implemented. Similarly, real time interactive three
dimensional call graph rendering is not any area where there appears to be a
great deal of prior work. Besides being an interesting undertaking, this project
also represented an excellent opportunity to learn the technologies involved in
the implementation.

1.3 Goals

The overall goal of the project is to implement a real time profiling tool with the
ability to present the resultant data interactively using 3D graphics. There are a
number of high level goals to be met as follows:

• The tool should be as portable as is realistically possible.

• The tool should operate on a network transparent basis. The reasoning
behind this is explained in section 2.1.2.

• The tool should present the data in an intuitive manner that is easy for
humans to interpret. Obviously this is somewhat subjective, so a small
usage study will be performed to decide whether this has been achieved.

• Along a similar vein, the tool should be easy to use.

• The tool should be implemented sufficiently optimally to maintain interac-
tivity on relatively modest hardware.

• The tool should be reasonably configurable.

• The tool must be able to profile programs written in the C language at a
minimum. Such programs should not need any modification in order to be
profiled.
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2. Design

There are essentially two distinct, broadly separate parts to the project. There is
the profiling tool itself — this must allow an arbitrary C program to be compiled
to interoperate with a separate analysis program. Part of this analysis program
is the 3D call graph visualisation that operates on the generated profile data.
These problems are sufficiently modular such that they could be developed almost
independently assuming a low coupled interface it agreed upon.

2.1 Real time profiling tool

The profiling tool needs to attach to the client program that is to be measured.
There are a number of strategies that could be employed here, but at the lowest
level it depends on the mechanism used to instrument the client program. gprof
is unique from the perspective that its instrumentation is on a per line basis. Un-
fortunately this approach is relatively infeasible for the real time profiling tool.
That is not to say it is impossible, but such an approach necessarily involves hack-
ing GCC to communicate with an external analysis program rather than writing
a gmon.out file on program termination. The extra unknown factor introduced
through an unstable compiler increases the complexity of the implementation to
a point where it is debatable whether the gains reaped by taking such a low level
approach are valuable enough. It is certainly true that a per line profile is not
easily or usefully visualisable in the form of a call graph.

Therefore a higher level of instrumentation must be used. GCC provides an
option -finstrument-functions[12] which allows a program to be instrumented
with two functions as seen in Figure 2.1.

void __cyg_profile_func_enter( void *this_fn, void *call_site );

void __cyg_profile_func_exit( void *this_fn, void *call_site );

Figure 2.1: GCC instrumentation functions

As their names suggest, these functions are called immediately following function
entry and before function exit respectively. By implementing these functions it is
possible to create a complete function level profiling tool by observing when calls
to these functions take place. This is the approach taken by the FunctionCheck
and hrprof profiling tools.

9
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2.1.1 Architecture

Having established that function level instrumentation will be used through GCC
it must be now be decided how the tool itself will integrate with a client program.
If the client program is compiled with the -finstrument-functions option it
must have implementations of the instrumentation functions corresponding to
the given prototypes or it will fail to link at compile time. It would be possible
to provide implementations of these functions in a C file that is compiled into
the client program. A far more elegant solution is to implement these functions
as a dynamic library which is linked into the client program as and when it is
executed.

This library could be implemented using a monolithic paradigm whereby the en-
tire profiling tool is implemented in the library itself. This is to some extent the
approach taken by the FunctionCheck profiler. The vast majority of its func-
tionality is implemented in the dynamic library. This seems a strange approach
for an off-line profiler where any necessary calculation could be performed by
the analysis tool post execution, having less of an effect on the client program’s
execution. Alternatively a lightweight implementation which only provides only
the minimum functionality could be employed. The advantage here is that the
impact of the instrumentation upon the client program is reduced and the accu-
racy of the profile is increased. This is a moot point from the perspective of a
real time profiling tool however, since the analysis stage must be performed in
parallel with the client program and necessarily incurs an overhead.

Yet the notion of a lightweight library with a low impact is still attractive. An
alternative to the monolithic approach is to logically separate the tool into a
dynamic library to be linked with the client program and a separate analysis pro-
gram with which the library (optionally) communicates. The role of the library
is simply to forward the data resultant from the instrumentation functions to
the analysis program where it is interpreted and output in some fashion. This
architecture is illustrated in figure 2.2. Clearly some IPC is necessary in order
for the library and analysis program to communicate.

2.1.2 Network transparency

One of the goals stated in the introduction was that the tool developed should
be network transparent. At first this may seem superfluous, however there are
two subtle underlying reasons.

The first is simply a matter of available screen area. Given that the tool is to
run in parallel with the program under measurement, both programs must be
visible on the screen at the same time. Without resorting to multiple monitor
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Figure 2.2: Real time profiling tool architecture

technologies or exceptionally high resolution displays it quickly becomes awkward
to display the profiling tool and the client program simultaneously on the same
screen. Additionally with both profiler and client program running on the same
windowing system it is necessary to switch focus between each window frequently.
If the two components are separated it becomes possible to use them at the same
time, or at the very least somewhat more conveniently.

The second, perhaps more subtle reason stems from the fact that the profiling
tool is measuring real time as opposed to process virtual time. In a scenario where
both the profiling tool and client program are executing on the same multitasking
operating system, the profiling tool visualisation represents a significant propor-
tion of expended CPU time. In an ideal world, the operating system scheduler
is perfect meaning that each process receives a constant quantity of CPU time.
Especially in desktop operating systems this is rarely the case and inevitably on a
highly loaded system a single process will receive varying quantities of CPU time
with respect to time. The result of this in the context of the profiling tool is that
any times measured using real time (i.e. with gettimeofday) will be distorted
based on how long the process has been queued for. By moving the profiling
tool to a logically separate computer system, the load on the system the client
program is executing on is removed and the resultant profile will tend to be more
accurate.

Obviously the requirement for network transparency heavily influences the choice
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of IPC to use, to the point where the only sensible option is to use BSD sockets.
Sockets are effectively a programmer level API for the Internet Protocol provid-
ing facilities for utilising TCP and UDP protocols. The connection between the
client program and the profiling tool must be reliable since any losses or dupli-
cation will adversely affect the resultant profile. As a consequence UDP is not a
suitable transport protocol. The data transferred between the two parties is dis-
crete in nature, but the reduced overhead of a stream service and the connection
orientated approach make TCP a good choice.

2.1.3 Data transfer

In order for the library to communicate with the analysis program, some informa-
tion must be transferred. The greatest influence here is the knowledge available
to the library through the instrumentation functions. There are essentially three
separate variables available to each instrumentation function call; the time at
which it was called, the symbol of the function and the return address of the
function (implying the call function). At first glance this would appear to be
entirely sufficient, but the return address (named call site in the function)
complicates matters.

The C keyword inline is a new addition to the C99[13] language standard. Func-
tions specified with this keyword are expanded inline as they are called, avoiding
the need for a stack frame. Conceptually this construct is intended as a re-
placement for preprocessor macros, preventing many of the associated pitfalls.
Strictly speaking an inline function call should not be instrumented since once
expanded by the compiler it no longer creates a stack frame when called. Inexpli-
cably however, the instrumentation functions are still called for inline functions.
Furthermore, the return address for such an instrumented function points to the
caller of caller of the function, assuming it exists at all. There are two potential
solutions to this problem. Firstly, to disable inlining altogether — this is possible
with the -fno-inline GCC option. Disabling inlining is an unreasonable action
to take since it involves changing the client program structure in order to operate.
This contradicts one of the original goals set out in the introduction. It is also
the case that on some platforms the call site variable does not work at all.
Secondly, it is possible to maintain a call stack for the client program. In this
case the caller function is implied by the top of the call stack and maintaining
caller identification is unnecessary. With this approach it is possible to simply
ignore the call site variable altogether and rely on the call stack to maintain
caller and callee relationships.

The profile is only updatable when the instrumentation functions are called due
to a change in the stack of the client program. The information from these calls
is discrete and can be represented as an event. The data transferred between
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Event type Event payload Event purpose
Function entry Time stamp, Func-

tion symbol
Generated when a function is
entered.

Function exit Time stamp, Func-
tion symbol

Generated when a function ex-
its.

Process exit none Generated to indicate to the
analysis program when the
client has terminated.

Figure 2.3: Event types

instrumentation library and analysis program consists of three things; the event
type, the timing of the event and the symbol involved where the event type is one
of function entry, function exit and process exit. These events are summarised
in figure 2.3. The role of the instrumentation library now is simply to produce
events as the client program executes while the analysis program consumes them
with an event handler.

2.1.4 Data interpretation

Once a communication channel has been established between the instrumenta-
tion library and the analysis program, the data must be interpreted to form the
profile. Broadly, this can be done two ways; synchronously and asynchronously.
A synchronous interpretation of the data consists of a regular loop which con-
sumes events as and when they become available. The natural approach is to
handle the events asynchronously — processing the events when they arrive at
the analysis program. Each approach has its merits.

Consider the scenario where a function in the client program has been entered
and then blocks for an arbitrary length of time. Using the asynchronous model,
following the initial function entry event the profile cannot be updated despite
the fact that the function is still executing and accumulating time. The profile
will of course be updated when the function exits. Using the synchronous model
it is possible for the event handling loop to update the profile accordingly despite
the lack of inbound events. The synchronous model will however be somewhat
more CPU intensive since each iteration of the event loop is executed regardless of
whether or not there is an event to process. The asynchronous model represents
the minimum CPU usage since it only adjusts the profile when new data becomes
available.

The synchronous approach is potentially more complex to program than the
asynchronous approach since inter-event profile updates must be made. It is
questionable whether these updates are worthwhile given that a program which
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blocks frequently is unlikely to benefit from profiling. This coupled with the extra
CPU usage mean that the asynchronous approach is most sensible.

In addition to the number of calls, there are two times that must be accumulated
for each function, the total time and the local time. The total time spent in a
function is calculated by measuring the time from when a function enters until
it exits. The local time spent in a function represents the time actually spent
executing, in other words the time the function spends on top of the call stack.
This is better explained in figure 2.4.

Figure 2.4: Local and total time

The call stack is maintained by the analysis program to keep track of these times.
Each new call interrupts the local time of the calling function while leaving the
total time to accumulate until the callee function exits.

The profile itself requires two data structures. Firstly a list of functions which
contain the information total time, local time, total number of calls and call re-
cency. This list must also indicate some identification for each function, either by
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symbol or textual representation or both. The second data structure is required
to maintain caller and callee relationships between the functions in the program.
This structure is more open ended in terms of representation and is discussed in
section 3.1.2.3.

2.2 Visualisation

With the underpinnings of the actual profiling mechanism proper in place, at-
tention must be diverted to the presentation of the data. The ultimate goal is
to present the data in the form of a call graph rendered in three dimensions, but
alternative representative forms are also necessary. It would be foolhardy to em-
bark on a complex means of representation without first ensuring the validity of
the underlying data. It is prudent therefore to explore a means of output which
is both simple and not open to interpretation.

An ordered flat profile as produced by gprof would illustrate the flat profile well.
With a real time profiling tool however, the flat profile is constantly changing.
A simple means of reflecting this is to show the profile at regular intervals in a
similar manner to the Unix load monitoring utility top. Having established the
integrity of the flat profile, the call graph must then be examined. Rather than
attempt to examine the call graph in a textual form, an existing graph drawing
tool can be used such as GraphViz [9]. Given a graph such a tool will utilise a
graph layout algorithm to position the graph nodes and edges. Thereafter it will
proceed to render the graph using the requested output format. A function which
translates from the real time profiling tool’s graph representation into a graph
drawing tool’s representation may be written relatively trivially. Such a function
can be executed to produce a call graph at any point in the program’s execution.
Due to the nature of the graph drawing tool however such an approach will not
yield a real time representation of the call graph. Ultimately it fulfils its purpose
in providing a means to ensure that the call graph data is generated correctly.

The most important output method is the 3D call graph, rendered in parallel with
the profile generation. This must expose information regarding the flat profile of
the client program in addition to its actual call graph.

2.2.1 2D versus 3D

It is questionable whether or not a three dimensional representation is even nec-
essary. In order to answer this question it is wise to re-examine the goals of the
visualisation. The primary motivation is to provide a means by which a pro-
gram’s profile can be observed in real time with the minimum of ambiguity and



16 2. DESIGN

the maximum clarity.

Another important consideration is the ease of navigation of the resultant graph.
This is especially important for large, complex graphs. Given only two dimen-
sions the bounding area of the graph is given by a plane. Similarly for three
dimensions the bounding area is a cuboid. If the same graph is represented in
both two and three dimensions then the same amount of information is contained
within each respective bounding area. Assuming a complex graph it is a realistic
assumption that it is not possible to view the entire graph simultaneously while
remaining legible and consequently useful. If views from each respective repre-
sentation are taken such that each is just past a legibility threshold (clearly this
is somewhat subjective) then the three dimensional projection will invariably
contain more information than the equivalent two dimensional representation.
The main consequence of this is that less navigation is required for the three
dimensional representation.

Figure 2.5: 2D and 3D layouts of the non-planar complete bipartite graph K3,3

Besides spatial reasons, overall graph clarity is also very important. As with much
of graph layout theory, the clarity of a graph is largely a subjective, aesthetic
variable. Certain obviously undesirable properties can be reasoned about using
mathematics. Edge crossings are one such property. A planar graph is defined
as a graph that can be drawn on a plane (i.e. in two dimensions) such that
no two edges cross. Unfortunately all but the most simple call graphs are non-
planar meaning that their two dimensional representations are confused by edge
crossings. Using a three dimensional representation however the graph nodes
are not constrained to a plane thus the possibility of edge crossings is virtually
eliminated. This is shown in figure 2.5. Depending on the layout algorithm used
it is possible that subgraphs of a complete call graph are laid out on a plane and
are vulnerable to edge crossings. In practice however this is relatively rare and
the problem of non-planar graphs can be safely ignored.
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2.2.2 Available graph attributes

Besides rendering the topology of the call graph, the flat profile of the client
program must somehow been incorporated into the graph. Figure 2.6 shows the
elements of the flat profile that can potentially be visualised in the call graph.

Variable Explanation
Total time The time spent between function entry and exit
Local time The time spent when the function is on top of the

call stack
Number of calls The total number of calls made to the function
Edge calls The number of times a function called another
Call frequency The frequency with which the function is called
Call recency How recently the function was called
Function name The name of the function

Figure 2.6: Visualisable data

Ignoring the function name for now, all of the visualisable variables are numeric.
Broadly speaking there are two domains that can be used in visualising the flat
profile variables, the spatial domain and the intensity domain. The spatial do-
main refers to the size and shape of the glyphs that represent elements of the
graph. The intensity domain specifies how these glyphs are coloured and com-
bined with the rest of the scene. This can be split up in to various sub-components
that may be used as indicators for the available data. Figure 2.7 shows the graph
attributes that may be changed to represent profile features.

The colour attribute requires the most attention. When rendering a scene in
three dimensions the surfaces are shaded to infer three dimensional shape on the
two dimensional framebuffer. In order to use the intensity domain to represent a
continuous variable therefore it must be shared to some extent with the shading
algorithm used. The colour space used with the colour attribute is important, of
which there are multiple options. The most commonly used colour space is RGB
short for red, green and blue. The human eye is a trichromatic integrator, mean-
ing that it measures light in three specific wavelength ranges. The RGB colour
space is representative of these ranges. Potentially it offers three individual chan-
nels for three continuous variables respectively but since the eye interprets these
channels as a single colour some thought is required to separate these channels
when the user is viewing the visualisation. An alternative colour space to use
is HSV, short for hue, saturation and value (brightness). The hue refers to the
gradation of the colour, i.e. whether the colour is red, green, blue or other inter-
mediate shade. The saturation of the colour refers to the intensity of the colour in
the sense that a desaturated colour is diluted with a grey value more heavily than
a saturated colour. The value channel gives the overall brightness of the colour.
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Attribute Explanation
Size/Scale The glyphs can be scaled according to some continuous vari-

able
Shape/Form The glyphs themselves have some shape. Typically this at-

tribute is best for representing discrete values.
Colour The glyphs can be coloured according to a single continu-

ous variable or potentially many. The colour space used is
influential here.

Alpha Related to colour, the alpha value refers to how pixels are
combined with other coincident pixels. This is the trans-
parency of the glyph and is mappable to a continuous vari-
able.

Texture A texture may be mapped to the surface of the glyphs. Sim-
ilarly to shape this variable is probably best at representing
discrete values. Since it uses the same domain as colour how-
ever, this is harder to combine with colour changes and still
remain useful.

Figure 2.7: Available graph attributes

The HSV colour space is somewhat more suited to separation by humans since
each channel is more distinct as far as the human perception system operates.

For the purposes of call graph visualisation, the number of variables which need to
be simultaneously monitored is relatively small. Instead of introducing confusion
into the colour space by using each channel separately a colour map can be used.
A colour map is a mapping of scalar value to colour space. Typically colour
maps are designed to be aesthetically pleasing rather than having a concrete
mathematical basis. A common real world example of the use of colour maps
is in representing elevation data on topographical maps. Instead of treating the
colour of graph glyphs as multiple channels, a colour map can be used to represent
a single continuous variable.

The alpha channel of a glyph may be assigned to another variable independently
of the colour attribute. While it operates in the same domain as colour its effect
on pixel colour is significantly different to a colour channel such that it can
easily be interpreted by humans as separate to the colour applied. A sensible
application of this attribute is to the call recency variable whereby functions not
called recently are shown progressively more transparent.

Using a three dimensional perspective projection, a projected object’s apparent
size varies inversely with its distance. In two dimensions the view distance is
effectively constant and as such rendered objects are the same size regardless
of view point. When representing a variable in the three dimensional spatial
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domain care must be taken. For example given two identically shaped objects
displayed at different distances there might be an instance where each object is
scaled such that when projected they appear to be the same size. Clearly when
a variable is mapped to the object scale attribute this falsely reflects the value of
the actual data. This problem occurs because humans infer the third dimension
in the scene (depth) by the perspective projection. The context in which objects
are represented in a scene is helpful to some extent. In the previous example
if each of the two objects were rendered in the same spatial region as another
object of known constant size the relative size of each would help to infer the size
of each object in the scene. This is the case in the rendering of a call graph since
each glyph is directly connected to at least one other glyph. The most effective
solution is to provide some means whereby the depth dimension is not inferred.
True stereoscopic vision systems are expensive and relatively rare however, so
this is an unrealistic general solution. The use of glasses with red and blue filters
to mask two superimposed images is a common means of producing stereoscopic
vision cheaply. In order to work however, it substitutes resolution in the intensity
domain to produce the depth perception effect.

2.2.3 Graphics library

Computer graphics is a relatively young, constantly evolving field of computer
science. As such the range of tools and libraries available is large and diverse.
While there are generalised, accepted graphics libraries available their use isn’t
always necessarily the best course of action.

The field of visualisation has spawned tools tailored specifically for the visual
representation of data. One such tool is VTK [14] — the Visualisation Tool Kit.
VTK is an object orientated framework consisting of a vast hierarchy of classes
dealing with various aspects of data visualisation. The coverage of VTK is quite
exceptional, catering for a large proportion of visualisation problems. Indeed
the infrastructure provided by VTK is more than sufficient to implement the
call graph renderer — going as far as providing implementations of graph lay-
out algorithms. This flexibility comes at a price however. VTK is a very large
and unusual dependency for a program to have, 99% of which will be redun-
dant. Additionally despite having all the pieces necessary to create a call graph
rendering tool, the granularity of the control available to the user is somewhat
more coarse than with a generalised graphics library. This has implications for
overall optimisation of the implementation which generally requires fine control
of the source code involved. VTK itself is not a graphics library but a set of tools
used to transform datasets into graphics primitives. It does however depend on
a graphics library — OpenGL[15].

The ‘open’ in OpenGL is short for open standards and GL for graphics library.
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Descended from SGI’s IRIS GL, OpenGL was first ratified in 1992. OpenGL is
not an implementation but a 2D and 3D graphics API designed from the ground
up to be portable, scalable and extendable by an entity known as the Archi-
tecture Review Board (ARB). The ARB is comprised of leaders of the graph-
ics industry, currently including representatives from 3DLabs, Apple, ATI, Dell,
Evans and Sutherland, Hewlett-Packard, IBM, Intel, Matrox, NVIDIA, SGI and
Sun Microsystems. Implementations are available for virtually every conceivable
platform including Mesa[16], open source under the GPL. Furthermore, hardware
accelerated OpenGL implementations are now common place such that relatively
cheap graphics adapters are capable of providing significant speed increases for
any graphics application using the library. OpenGL is a very capable graphics
library including a well defined extension mechanism for the incorporation of new
innovations produced by the ever evolving computer graphics field.

For the purposes of rendering a call graph, OpenGL provides all the required
facilities. From the perspective of maintaining portability OpenGL is the only
sensible choice when compared with competing technologies such as Microsoft’s
Direct3D [17], a graphics library with similar industry support to OpenGL but
supporting only the Windows platform. The OpenGL API itself is also pleasant
to use and very well defined.

2.2.4 Graph layout algorithm

A graph G is a set of vertices v connected by edges e, thus G = (v, e).

Figure 2.8: Definition of a graph

A significant proportion of the graph rendering problem is deciding on the phys-
ical locality of the glyphs that make up the graph. This is the responsibility of
the graph layout algorithm. Many such algorithms have been developed, partly
because the success of the algorithm is defined by aesthetic criteria and as such
fairly subjective. In general the problem of graph layout is specified as a place-
ment of the graph vertices v (see figure 2.8) such that some aesthetic quality
is achieved or approached. For the purposes of rendering the call graph in real
time however, the overriding requirement is that the algorithm used is efficient
and relatively scalable. Aesthetics are still important, but not at the expense of
interactivity.

In 1984 Peter Eades[18] wrote a paper on the method of force directed placement
for generalised graph layout. His heuristic modelled the graph as a physical
system, where graph nodes were represented by rings and edges by springs. Eades’
springs did not conform to Hooke’s linear spring law however, instead using a
logarithmic term. Additionally each ring in the system repulsed every other, much
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like electrically charged particles with the same charge repel each other. Given
any initial condition, the forces active on the graph components are iteratively
computed and graph nodes moved until a state of equilibrium is reached. In such a
state (of which there may be many), the position of the graph nodes is reasonably
isotropic and the layout is generally accepted to be a pleasing. Further work has
since been put into force directed placement. Kamada and Kawai[19] modified
Eades’ force calculations such that the distance between non-adjacent vertices
was made proportional to the shortest path (graph-wise) between them. The
thinking behind this approach is to attempt to ensure physical locality for graphs
nodes that were logically local to one another. Fruchterman and Reingold[20]
further developed this idea such that graph nodes are not laid out too close to
one another.

Another approach to graph layout is simulated annealing, first explored in 1989
by Davidson and Harel[21]. Annealing is the process of heating and cooling some
material in order to alter its structure to a more regular form. A simulation of
this process is applied to a graph such that after an iteration a node is moved
to a potentially more suitable position. This suitability is measured based on a
probability. At high virtual temperatures movements are large. As the simulation
is cooled each successive movement is reduced in magnitude until some predefined
threshold is surpassed. Simulated annealing’s main strength is its ability to layout
planar graphs without any edge crossings.

a. b. c.

Figure 2.9: Example results of simulated annealing (b) and force directed place-
ment (c) layout algorithms applied to an initial random configuration (a)

In comparison to force directed approaches however, symmetry and geometric
structure are not exposed to the same degree. The benefits of edge crossing
avoidance are very small when these algorithms are extended to three dimensions
(see section 2.2.1). More crucially the performance of the force directed approach
is superior to simulated annealing. Furthermore, without any edge length nor-
malisation the results of force directed placement are typically aesthetically nicer.
This is shown in figure 2.9.

There are numerous other approaches to graph layout, albeit not applicable to
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the general case. Ostensibly the character of call graphs is often tree like, but
it would be näıve to assume this is always the case. Therefore a force directed
layout algorithm is the best approach to take. The earliest research into graph
layout was confined to two dimensional graphs — extension to three dimensions
is trivial however. There are several more recent papers concerned purely with
three dimensional graph layout. These include Fast Interactive 3-D Graph Visu-
alization[22] and Some Three-Dimensional Graph Drawing Algorithms[23].



3. Implementation

Having made the required design decisions, attention must now be turned towards
the actual implementation of the tool.

3.1 Profiler

There are two elements to the profiler itself. Firstly a dynamic library named
librtprof.so that is linked with the client program being profiled. This library
then communicates with an analysis program, rtprof. rtprof is short for real
time profiler.

3.1.1 Instrumentation library

As first described in section 2.1, the GCC option -finstrument-functions is
used to instrument every function in the client program. The intended archi-
tecture of the profiling tool is a dynamic library linked with the client program
which communicates with an external analysis program (figure 2.2). In order to
satisfy the requirement for network transparency some IPC is required, in this
case BSD sockets.

For the instrumentation library to communicate with the analysis program how-
ever, it must first establish a connection. Since the analysis program does not
necessarily run on the same physical computer system as the client program, the
instrumentation library must be instructed where to connect. This indication
mechanism is provided by an environment variable named RTPROF SKT. When
a client program is executed the first call to cyg profile func enter(...)

attempts to parse this environment variable (figure 3.1) and connect to the indi-
cated location.

<Socket variable> → <TCP socket> | <Unix socket>
<TCP socket> → rtprof://<hostname>
<Unix socket> → unix://<filename>

Figure 3.1: Grammar for the environment variable RTPROF SKT

The profiling tool supports two socket types, both of which utilise a reliable
stream transport. The usual means of connection is via a socket using the TCP
protocol. This method is used when the analysis program and instrumentation

23
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library exist on separate computer systems. An alternative means of connection
is provided by a so-called unix socket. When a process (in this case the analysis
program) opens a unix server socket a special file is created by the operating
system. Connecting clients then use this file as a means of identification. Com-
munication between parties occurs within the operating system. The advantage
compared to using a TCP socket is that there is no networking overhead incurred
and as such communication is somewhat more efficient. Obviously of course this
is only useful when the client and analysis programs are executing on the same
computer system.

A desirable property for the instrumentation library was to ensure a low impact
on the client program. In terms of implementation this means that the library
should contain the absolute minimum of necessary functionality:

• Connection with the analysis program and error recovery therein.

• Report function entry events to the analysis program.

• Report function exit events to the analysis program.

• Report process exit events to the analysis program.

• Handle the abnormal termination of the analysis program or network failure
to that effect.

There are two failures that can occur while the instrumentation library attempts
to connect to the analysis program. Firstly the parsing of the environment vari-
able RTPROF SKT may fail. This can occur either because the user has not used
to correct syntax, or because the user has not set the environment variable at
all. Secondly the socket connection itself may fail. Usually this will occur when
the analysis program is not running, but it could conceivably happen under other
circumstances such as intervening network filters preventing connections on the
port used. Neither of these errors are fatal — should they occur the instrumenta-
tion library will print a message to stderr to that effect and the client program’s
execution will continue as normal albeit with a performance penalty incurred by
the (in this case redundant) instrumentation functions.

MSG_NOSIGNAL

Requests not to send SIGPIPE on errors on stream oriented sock-

ets when the other end breaks the connection. The EPIPE error is

still returned.

Figure 3.2: Extract from the send(2) manual page

In the case where the analysis program fails (hopefully this isn’t a frequent oc-
currence) or is deliberately terminated or externally killed, the instrumentation
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library must ensure that the client program does not fail or suffer otherwise ad-
verse effects. By the very definition of failure, the analysis program does not
indicate to the instrumentation library that it has failed, so the instrumentation
library must detect this. Usually when send(...) is called on a closed stream,
it generates a signal SIGPIPE to the calling process. The programmer must write
a signal handler to take recovering action. In the case of the real time profiling
tool however, the instrumentation library must have the minimum impact on the
client program. It might be the case for example that the client program already
has a signal handler for SIGPIPE and generating this signal could potentially
cause confusing errors. Instead therefore, the instrumentation library needs to
handle broken streams without the use of signals. This is accomplished by the
MSG NOSIGNAL(figure 3.2) socket flag. Instead of calling a signal handler the in-
strumentation functions simply check the return value of send(...) and cease
further socket operations if a problem is detected. The socket code is clearly the
slowest part of the instrumentation, so if socket operations are stopped the client
program will experience a sudden increase in speed.

typedef struct functionEvent_s

{

unsigned char type;

void *this_fn;

timeStamp_t ts;

} functionEvent_t;

Figure 3.3: The struct passed by the instrumentation library

Figure 2.3 listed the events that must be transmitted from the instrumentation
library. A header shared between the instrumentation library and analysis pro-
gram defines a struct, functionEvent t(figure 3.3). As the name suggests, this
struct embodies the events passed to the analysis program which in turn forms
the profile. The field type is one of EV ENTER, EV EXIT or EV PROCEXIT — the
enum, event t. Each of these corresponds to an event type. this fn is one
of the parameters passed to each instrumentation function whose purpose is to
identify the function involved. It is an offset within the binary file which may be
resolved to a human readable textual function name by a separate library. ts is
an unsigned long long time stamp indicating when the event occurred. On the
Linux/x86 [24] platform, this has size 8 bytes and stores the time as returned by
gettimeofday in the form of the number of µ-seconds since the Epoch (00:00:00
UTC, January 1, 1970). An alternative to this approach would be to keep the
time in the format returned by gettimeofday, however computing the difference
between two clockwise times is more complex than with two combined times.
Appendix A shows the instrumentation functions as implemented.



26 3. IMPLEMENTATION

3.1.2 Analysis program

3.1.2.1 Symbol resolution

A parameter of each event passed by the instrumentation library is the symbol
of the function that is involved. This takes the form of an offset within the client
program’s binary file. In human terms this is close to useless from the perspective
of source level profiling. Therefore some means of converting between the symbol
offset and a human readable function name was required. The GNU Binutils[25]
package contains a variety of utilities for the manipulation of binary files. One of
these utilities is nm, whose purpose is to list human readable symbols in a binary
file. On a programmatic level, nm and the rest of Binutils use a library called
BFD — the Binary File Descriptor library. This library is used by the GNU
assembler gas and GCC in order to manipulate binary files as necessary. For the
purposes of the real time profiling tool however, BFD is only used to replicate
the functionality of nm.

When the analysis program is started one of the first things it does is to parse
command line arguments using getopt long(...). After processing command
line switches, the remaining command line arguments are assumed to be one or
more binary files. Each of these is processed in turn and BFD is used to list
and convert the symbols within each. Each function name is inserted into a
bucket-chain hash table hashed by offset symbol. Thereafter the function names
corresponding to each offset symbol may be efficiently retrieved as required.

3.1.2.2 Parallelism strategies

It is the responsibility of the analysis program to perform two tasks; generate
the profile from the event data transmitted by the instrumentation library and
secondly to present the profile graphically. In order for these to be executed
simultaneously, some form of parallelism is required. Initially the use of threads
was explored through the POSIX Threads(pthreads) library which is a part of
glibc[26].

The first implementation using pthreads was ostensibly a success. Both the
profile generation and visualisation executed harmoniously and smoothly. At
this point however mutual exclusion issues had not been considered and the
visualisation occasionally caused segmentation faults as it attempted to read
data from the profile while it was still being written. The event handler was
thenceforth designated to be a critical section in which the visualisation was
disallowed access to the profile. In this case however, the analysis program spent
more than 95% of its run time in this critical section, the result of which being
that the visualisation was severely starved for CPU time and largely unusable
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due to a lack of interactivity. Two solutions presented themselves. Firstly by
maintaining the threaded architecture but splitting the visualisation so that it
would render a frame regardless of the state of the critical section. In this case
the visualisation would only render a frame for the most recently available data, a
copy of which it maintained itself. If the critical section was clear, this copy would
be updated with the most recent data. However, this approach was regarded as
another complication to an already complicated system.

The choice to use a threaded architecture in the first place was heavily influenced
by the decision to use blocking sockets in the event handler. The term blocking
sockets refers to socket operations that halt further program execution until they
are complete. In terms of the real time profiler the use of blocking sockets means
that when an arbitrary client program blocks in an arbitrary function, the event
handler of the analysis program blocks too. When using blocking sockets in this
way therefore, some high level parallelism was needed. If the event handler was
rewritten such that it used non-blocking sockets however, execution of the analysis
program could continue regardless of the state of the client program. Calls to the
visualisation renderer could now be interleaved with the event handler so that
outwardly each part of the analysis program apparently executed in a separate
execution thread. In reality these elements are internally scheduled within the
same process.

This is the approach that was taken. Initially the use of non-blocking sockets was
avoided due to the extra complication of handling partial events. In hindsight
however, the non-blocking sockets implementation is somewhat more simple than
the previous equivalent implementation using threads. As an added bonus, the
analysis program no longer depends on the pthreads library.

3.1.2.3 Generating the profile

typedef struct stackFrame_s

{

void *symbol;

timeStamp_t calleeEntryTime;

timeStamp_t calleeExitTime;

struct stackFrame_s *next;

} stackFrame_t;

Figure 3.4: The struct that is placed on the stack

Central to the generation of the profile is a stack on which function calls are
placed. Each ‘stack frame’ on this call stack contains two time stamps; the time
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at which a child function is entered and the time at which it exits (figure 3.4).
When a function is entered its calleeExitTime time stamp is set to the event
time stamp. Thereafter the event handler computes the difference between event
time stamps and the callee entry and exit time stamps to advance the local and
total time (figure 2.4) for the function(s) involved.

This asynchronous approach implies that the profile is only updated when events
actually occur. This is generally not a problem since programs that would benefit
from being profiled will typically produce an uninterrupted stream of events.
There is a more subtle deficiency in the stack based approach however. The
very nature of a stack implies that only the top of the stack is both visible
and manipulable. For the calculation of local time this is not an issue since a
function will only accumulate local time when it is on the top of the call stack.
For total time however, every function on the call stack accumulates total time
simultaneously. Using a stack, total time for some function is only updated once
a direct descendant is entered or exited. Therefore functions near the bottom of
the stack have diminished, conflicting total times in relation to those on the top
of the stack. In reality this doesn’t have any particular detrimental implications
since function total time is of little use when interpreting a program’s profile.
Currently it is not actually visualised. This problem is by no means insolvable.
A possible solution is to pop the entire stack at every function event, update each
function’s total time accordingly and repush each popped function back on to the
stack. Alternatively a more sensible solution is to pervert the stack abstract data
type such that it is ‘transparent’ and may be addressed like a linked list.

The stack alone is not enough to generate the profile. The data garnered by
computing time stamp differences must be stored in some data structure. Since
the ultimate goal of the real time profiling tool is to visualise a call graph, a call
graph abstract data type is prudent. The datatype is embodied in the struct

shown in figure 3.5. This stores various global data relating to the call graph such
as totalCalls — the total number of function calls made. The graph nodes and
edges themselves are stored in separate sub-data structures.

The graphNode t struct stores information pertaining to each function in the
client program. Instances of this struct are stored in a bucket-chain hash table
in a similar manner to the symbol table covered in section 3.1.2.1. Retrieval
of the graph node data is facilitated by a function graphNode t **listNodes(

sortField t sf, int *n, graph t *g ) which uses malloc(...) to allocate
a linked list of graphNode t structs. The list returned by this function is op-
tionally sorted by qsort(...) on a specified field. The graph ADT originally
used an adjacency matrix to represent edge connections between nodes. For small
programs with few functions this strategy worked well. For larger programs how-
ever, analysis proved that typically less than 2% of the elements in the matrix
were utilised. Furthermore, listing this data structure (as required by the layout
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typedef struct graph_s

{

int numNodes;

graphNode_t *nodeBuckets[ MAX_BUCKETS ];

int numEdges;

graphEdge_t *edgeBuckets[ MAX_BUCKETS ];

timeStamp_t totalLocalTime;

timeStamp_t totalTotalTime;

timeStamp_t maxLocalTime;

timeStamp_t maxTotalTime;

timeStamp_t maxInactiveTime;

long maxEdgeCalls;

long maxNodeCalls;

long totalCalls;

} graph_t;

Figure 3.5: The struct used to represent graphs

algorithm) confirmed the inefficiency of this representation, with each cell of a
potentially very large matrix needing to be queried individually (O(n2) space and
listing efficiency). In place of this flawed edge representation therefore, a simple
edge list bucket-chain hash table was implemented — very much similar to that
used by the node hash table. This is embodied by the graphEdge t struct.

One element of the profile is generated differently to the others. While total time,
local time and number of calls are all accumulated asynchronously by the event
handler, call recency is evaluated synchronously based on the time as reported by
the analysis program. The reason for this is so that in the case where the client
program blocks functions are not falsely represented as being active. The code
for the event handler may be found in appendix B.

3.2 Output methods

The profile of a program is useless without some means of observing it. This
section details the implementation of the methods with which the profile is pre-
sented.
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3.2.1 GraphViz output

In order to verify the validity of the generated call graph, a module was written
to output the profile data in a form that could be converted to a graphic repre-
sentation. Section 1.2 briefly mentioned a tool named GraphViz [9]. GraphViz is
a set of tools to layout directed graphs using a variety of target file formats. At
the core of GraphViz is a graph description language that specifies graph nodes
and connecting edges. Extra options are available to perturb graph nodes in some
defined manner — for example it may be specified to scale edge lengths by some
factor. The DOT language is described in appendix C.

For the purposes of graph verification, only a small subset of the DOT language
is used. The function shown in figure 3.6 writes a digraph to a specified file, or
stdout. If the command line option --dotfile is given this function is called
when the client program exits. Each edge and the nodes on which it is incident are
listed in the output file. Thereafter this valid DOT file is converted to a graphic
form. GraphViz provides two tools for this, dot and neato. dot utilises a rank
based layout algorithm and consequently is best suited to laying out hierarchical
data. Similarly to the analysis program, neato uses a force directed placement
layout algorithm and as such is more suitable for visualising call graphs. Figure
3.7 depicts a call graph laid out by dot.

Since the use of GraphViz is simply to verify the integrity of the call graph -
the profile data itself is not incorporated into the DOT file. However this is
possible. The DOT language provides facilities for colouring graph nodes and
altering their shape. A possible future avenue of interest would be to extend the
GraphViz frontend such that it exposed more detail regarding the profile proper.

3.2.2 OpenGL output

OpenGL[15] is a standardised graphics library used for rendering two and three
dimensional graphics to a framebuffer. It supports a variety of graphics facilities
such as Z-buffer based depth sorting, back face culling, alpha blending, lighting
and shading. Combined with its companion library GLU, short for GL Utilities,
OpenGL can also render basic 3D geometric shapes. OpenGL alone is not re-
sponsible for rendering directly to the screen however. In order to do so, some
‘glue’ is required between OpenGL and the underlying windowing system of the
host operating system. On XFree86 this is provided in the form of an X extension
named GLX, while Microsoft Windows uses a mechanism called WGL. Each sup-
port the notion of an OpenGL context — a region of memory which is mapped
to some window or otherwise visible screen region. At this level the management
of OpenGL contexts is decidedly unportable.
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/*

===============

dotOutput

Write a graphviz dot file

===============

*/

void dotOutput( char *filename, graph_t *g )

{

graphEdge_t **p;

int n, i, j;

FILE *f;

if( !strcmp( filename, "-" ) )

f = stdout;

else

f = fopen( filename, "w" );

p = listEdges( &n, g );

fprintf( f, "digraph callgraph\n{\n" );

for( i = 0; i < n; i++ )

{

fprintf( f, "\t\"%s\" -> ", p[ i ]->from->textSymbol );

fprintf( f, "\"%s\";\n", p[ i ]->to->textSymbol );

}

fprintf( f, "}\n" );

fclose( f );

free( p );

}

Figure 3.6: The GraphViz DOT file output function
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Figure 3.7: A GraphViz DOT file generated by rtprof and laid out using neato
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Figure 3.8: How SDL fits in to the traditional OpenGL architecture

Fortunately there is a library named SDL[27], short for Simple Directmedia Layer.
SDL is essentially a comprehensive abstraction layer for many of the systems
involved in computer games development — the driving force behind its devel-
opment. The underlying premise of SDL is that if some application is developed
with portability in mind on top of the library, then migration to foreign platforms
will involve the minimum hassle. Currently there are certified ports for Linux,
Windows, BeOS and Mac OS but there are also unofficial ports for a range of
other platforms including Solaris, IRIX, FreeBSD and indirectly for the Playsta-
tion 2 games console. SDL provides a platform transparent means of managing
OpenGL contexts (figure 3.8) as well as lower level video operations such as colour
depth selection and video mode switching. Additionally SDL delivers a range of
peripheral subsystems including but not limited to, input, sound, threading and
portability utilities. From the perspective of the real time profiling tool the most
useful of these is the input subsystem. This provides both asynchronous event
based input handling mechanisms and synchronous input polling mechanisms for
a variety of hardware devices. Figure 3.9 shows the code required to create an
OpenGL context on any platform which SDL supports.

if( SDL_Init( SDL_INIT_VIDEO ) < 0 ) //initialise SDL

return;

if( SDL_SetVideoMode( 640, 480, 0, SDL_OPENGL ) == NULL )

{

SDL_Quit( );

return;

}

Figure 3.9: Creating an OpenGL context using SDL

3.2.2.1 Geometry

A graph consists of edges and vertices. In order to represent the graph pictorially,
glyphs must be drawn to the screen which represent each of these elements. In the
case of the real time profiling tool, these glyphs must also incorporate elements
of the generated profile.
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The higher level functionality library GLU provides useful facilities here. Instead
of rendering the glyphs manually triangle by triangle, GLU has functions to
draw a number of common simple geometric primitives including cylinders, discs
and spheres. All of these are useful in constructing the geometry to represent
graph elements. In terms of geometry it was decided that graph nodes should be
represented by spheres while graph edges are represented by extruded arrows.

Figure 3.10: The anatomy of a normal graph edge

Concentrating solely on geometry, graph nodes are rather simple to add to the
scene from a programmatic point of view since all that is required is a single func-
tion call to gluSphere(...). Edges are more complex. In the general case, an
edge as rendered by the analysis program has three components; the shaft, flange
and arrowhead (figure 3.10). In this case the function call gluCylinder(...) is
used to add the shaft and arrowhead to the scene whereas the call gluDisk(...)
is used for the flange. If these were the only graph primitives required then pro-
gramming the required geometric figures would be exceptionally straightforward.
Unfortunately there is a special edge case — that of the recursive edge.

Figure 3.11: A recursive edge

This edge must have both end points connected to the same node and thus
necessarily is curved. Since the edge must come back on itself the obvious shape
is circular or elliptical (figure 3.11). This figure has the same anatomy as the
regular edge, but it is perturbed around the circumference of a circle. There
is no GLU primitive available to draw tori (a donut shape), much less partial
tori with variant diameters as would be useful here. A library named GLE [28] is
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available which is intended for the generation of tubing and extrusions as required
here, however the benefits reaped by adding another library dependency to the
analysis program are outweighed by its prohibitively low prevalence on most
computer systems. Furthermore manual generation of the graph primitive on a
per polygon basis is not excessively complex.

x(t) = sin(2πt)

y(t) = cos(2πt)

Figure 3.12: Parametric equation of a circle (radian measure)

For this the parametric equation of a circle (figure 3.12) is used in two instances.
In the first the points along the length of the edge must be drawn around a circle
whose centre is one edge radius away from the node centre and secondly these
points are rotated about the length of the edge in order to give the primitive
volume. These uses are shown in figure 3.13. On a programmatic level, the
GL TRIANGLE STRIP OpenGL facility is used to generate the constituent parts of
the recursive edge. The edge is segmented along its length such that each seg-
ment is approximated by a circular ribbon of triangles. This continues along the
edge, peturbing the strips to form the shaft, flange and arrowhead as necessary.
Obviously the more segments used increases the accuracy of the figure rendered,
but care must be taken such that the overall polygon count of the primitive is
not detrimentally large.

Figure 3.13: The two ways in which the parametric circle equation is used in
drawing recursive edges

One of the visualisation channels identified in figure 2.7 is the scale of the glyphs
rendered. In the case of graph nodes, this is a simple case of applying a scaling
factor in every dimension. For edges however, the overall length of the edge
must not change in relation to its scale, so edge scaling is only performed in the
diameter of the edge.
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3.2.2.2 Colour map and alpha values

The colour of the glyphs is easy to set using OpenGL, requiring only a function
call to glColor(...). In order to choose a colour however, a colour map is
required to convert from scalar value to some colour space. Generation of a
colour map is possible by mapping curves to parameters in a colour space (i.e.
RGB or HSV). In practice however, the success of a colour map is a largely
aesthetic variable governed by subjectivity rather than mathematics. In the case
of the analysis program colour maps are generated in the RGB colour space by
listing an arbitrary number of discrete colours then linearly interpolating between
them. The discrete colours themselves are distributed evenly throughout the
scalar space. Figure 3.14 shows a colour map generated using this method.

Figure 3.14: An example colour map blending from (0.0, 0.0, 0.0) to (0.38, 0.0, 0.0)
to (0.0, 0.5, 0.61) to (0.0, 1.0, 0.0)

Appendix D shows the implementation of this linear interpolation based colour
map generator.

The transparency of each glyph is another mappable variable. Alpha blending
as it is known, involves combining objects with the existing framebuffer through
the use of some defined blending function. This is shown in figure 3.15 where
Source is the pixel value of the object to be combined and Destination is the
corresponding pixel value in the framebuffer. The factors < srcBlend > and
< dstBlend > are defined when specifying the blending function. In the case of
the visualisation this is glBlendFunc( GL SRC ALPHA, GL ONE MINUS SRC ALPHA

) giving rise to the blending function Object.ObjectAlpha + Framebuffer.(1 −
ObjectAlpha). This is what is generally recognised as transparency where each
pixel’s alpha channel gives a weighting of the pixel value used in combination.

Source. < srcBlend > +Destination. < dstBlend >

Figure 3.15: OpenGL blending function

OpenGL is a Z-buffer based graphics library. A Z-buffer is a buffer the same
size as the framebuffer which stores a depth value for every pixel relative to the
camera. When a pixel is written to the screen it is first compared for depth
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with the Z-buffer, and skipped if it is obscured by a corresponding existing pixel.
Consequently, the order in which objects are added to the scene is unimportant.
When alpha blending is employed however, for a consistent scene objects must
be drawn in back to front order since one object cannot be alpha blended with
another if it has not first been drawn to the framebuffer. The net result of this
is that currently scenes rendered by the analysis program are not consistent with
respect to alpha blending. In order to solve this problem a significant change
must be made to the drawing architecture such that it is possible for nodes and
edges to be drawn interleaved, instead of the nodes first approach currently used.
The glyphs must then be depth sorted and added to the scene in back to front
order. The author’s favourite algorithm for depth sorting is radix sort [29] since
it is highly efficient at sorting fields which are already partially sorted. However
any efficient sorting algorithm can be applied.

3.2.2.3 Text

No matter how pleasing the rendering of the graph glyphs, the rendered call
graph is virtually useless unless some identifcation is associated with each graph
node. The visualisation must annotate each graph node with the name of the
function it represents. Neither OpenGL or GLU provides any facilities for ren-
dering text to a GL context. The GLX extension provides a function named
glXUseXFont(...) which provides a means for converting between an X bitmap
font and an equivalent list of OpenGL commands, known as a call list. This
approach is rather unportable however and oddly does not work on Informatics
department machines. The GLUT [30] (GL Utility Toolkit) library is a lightweight
window system independent toolkit based on OpenGL. Conceptually it is slightly
higher level than GLU in terms of functionality. A subset of its functionality is
to render both bitmap and stroke based fonts from a selection of GLUT fonts.
The visualisation uses the GLUT font GLUT BITMAP HELVETICA 12.

3.2.2.4 Layout algorithm

Peter Eades’[18] generalised graph layout algorithm is outlined in figure 3.16.
This is the parent to all current force directed placement layout algorithms and
consequently is probably to most simple and easy to implement. With some
modification it is also relatively efficient.

This is the algorithm used by the visualisation to layout the call graph, with
some small differences. In place of the C1 constant, the algorithm implemented
uses a constant < 1 which is placed infront of the repulse function in addition to
the attract function. I found this tended to reduce ‘bunching’ whereby complex
subgraphs resolve such that node density was somewhat variant across the entire
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The repellant force between any two vertices is given by:

repulse(d) =
C3

d2

The attractive force between any two nodes connected by an edge is
given by:

attract(d) = C1. ln(
d

C2
)

Where d is the distance between the vertices.

1. place vertices of graph G in random locations
2. repeat M times

(a) calculate the force on each vertex ~F using the above func-
tions

(b) move the vertex C4. ~F

Where values of C1 = 2.0, C2 = 1.0, C3 = 1.0 and C4 = 0.1 are
thought appropriate for most graphs. A value of M = 100 should
result in a graph layout tending towards a minimal state for modestly
large graphs.

Figure 3.16: Peter Eades’ FDP graph layout algorithm

graph. Instead of iterating to a minimal state, the algorithm implemented per-
forms only a single iteration. Originally this algorithm was intended to perform
graph layout statically (figure 3.17), but in this instance the layout is performed
dynamically as the analysis program runs. Consequently, while computing power
has moved on since 1984, performing too many iterations of the layout algorithm
quickly reduces the framerate of the overall visualisation. For the time being the
minimum number of iterations is performed per frame.

“An implementation of the algorithm on a VAX11/780 (in unoptimsed
pascal) is fast (in fact, I/O bound) if the number of vertices in G is
less than 30.”

Figure 3.17: Peter Eades’ 1984 effciency assessment of the algorithm

A further modification of the algorithm is in the initial placement of the nodes.
Originally the algorithm specifies that the nodes should be placed entirely ran-
domly (within some numerical bounds obviously). This is acceptable for a static
layout run, but in the case of the call graph visualisation new nodes may be added
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to the graph as it is laid out. In this case a randomly placed node has a low prob-
ability of being initially placed within the locality of its eventual layout position.
Furthermore, such a placement is likely to be disruptive to the remainder of the
graph layout, reducing the overall effectiveness of the visualisation. Since graph
nodes are added to the profile in some order it is intuitive to place new nodes
within some local area around the graph node with which it is connected by an
edge. Placing new child nodes such that they are coincident with their parent
nodes is not a viable solution since the d term in the repulse function is zero and
evaluation would result in a divide by zero error. This may be solved by creat-
ing a special case whereby the result is a large positive number approximating
infinity, but the force is still unresolvable since the vector between the nodes is
undefined. A suitable vector may be derived by computing the direction from the
centre of mass of the graph to the initial layout position of the new node, but the
computational cost of calculating an ever changing centre of mass is prohibitive
in an already expensive algorithm.

Instead of this approach therefore, the random initial placement is retained albeit
with modifications. When a node is added to the call graph its placement is
determined first by the position of the parent node then by a random distribution
within some small bound. New nodes are therefore added within a reasonably
local area with respect to their parent nodes, and will cause less disturbance than
had they been placed in an entirely random fashion. Furthermore the random
number generator used is seeded by the function’s symbol name so that separate
(albeit similar) runs of the same program are laid out in a pseudo-deterministic
manner.

Recursive edges are a special case in the layout algorithm. Each recursive edge is
associated with a dummy graph node that is never rendered. This dummy node
serves purely to layout the recursive edge and is not involved in the profiling in
any way.

3.3 Optimisation

An important goal stated in section 1 was that the visualisation tool should be
implemented efficiently enough that it remained sufficiently interactive to remain
usable. When developing any heavily CPU bound application, optimal program-
ming must be considered at all times. More specifically this means avoiding
suboptimal programming practices such as loop invariant variables and passing
by value when you can pass by reference. On a higher level there are more global
optimisation strategies that can be applied to specific problems.
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subDiv = (int)( ( ( LOD_DIST - distance ) / LOD_DIST ) * (float)NODE_SUBDIV );

if( subDiv < 3 )

subDiv = 3;

subDiv = (int)( (float)subDiv * ( 1.0f + ( size / MAX_NODE_SIZE ) ) );

Figure 3.18: LOD function for graph nodes

3.3.1 Level of detail

In any polygon based modelling system the overall rendering efficiency is governed
heavily by the number of polygons in the scene. Clearly therefore, it is advisable
to keep this quantity to a minimum. In terms of the glyphs themselves this means
using the minimum number of polygons possible while maintaining the desired
level of detail.

This quantity may be reduced further however, by noticing that if two identical
glyphs are displayed at different scalings or view distances, the one that occupies
fewer pixels on the framebuffer could be represented by fewer polygons and still
maintain the same apparent level of detail. This is because framebuffer resolution
is finite — each pixel is just a sample of the actual model behind the visualisation.
If a model is projected on to a 2 dimensional framebuffer where it occupies only
a single pixel, a single polygon representation of the model will result in the same
projection as that of a model that contains many thousands of polygons. Varying
the number of polygons used to approximate some geometric structure is called
level of detail or LOD for short.

In the visualisation this is acheived by subdividing the mesh of the glyphs more if
the distance to the object from the camera is small. The LOD function employed
for graph nodes is shown in figure 3.18. The first line specifies that node sub
divisions is a function of distance so that at zero distance the primtive is fully
sub divided, but at further distances it falls to zero. The last line then specifies
that graph nodes that are scaled larger are subdivided more as they will occupy
more pixels in framebuffer space.

Graph edges are decimated in much the same manner except for a special case
whether the flange and arrowhead components of the edge are not drawn at
all once a specific distance threshold is surpassed. Instead an extended shaft is
rendered such that the difference is nearly imperceptible at the threshold level
used. This helps to reduce the number of polygons by a factor of around ten
when an edge is at its furthest from the camera.
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3.3.2 Layout algorithm efficiency

The Eades graph layout algorithm is efficient apart from one crucial flaw, the
ln term in the attract function. This is computationally expensive to evaluate,
especially when it is performed for every graph edge, multiple times a second.
The ln term does not need to be evaluated with a great deal of accuracy however.
As long as the resultant function is approximately logarithmic in terms of growth
it will suffice for the purposes of the attract function.

Let f be inifinitely differentiable in {x ∈ R : −R < x < R} = (−R, R). If

|f (n)(x)| < C.Bn or |f (n)(x)| < Cn!R−n

for all n in N and x ∈ (−R, R), where C and B are constants and R is a radius
of convergence, then

f(x) =
∞
∑

n=0

anxn for |x| < R, where an = f (n)(0)/n!

Figure 3.19: Taylor-Maclaurin Theorem

Figure 3.19 describes the Taylor-Maclaurin theorem. This provides a means of
expressing a function (within some confines) as a power series. The key concept
here with respect to computer science is that by summing the power series to a
finite number instead of infinity, a function is produced that approximates the
original yet is somewhat less computationally intensive.

ln x = 2
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x + 1

)
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for x ≥ 0

Figure 3.20: Taylor series for ln x

In place of the ln term in the attract function, a Taylor series is used, as seen
in figure 3.20. Originally a function was written to calculate ln x using a Taylor
series to an arbitrary order. After some experimentation it was found that the
first order power series for ln x was sufficiently accurate to replace the term. This
is 2x−1

x+1
— significantly cheaper to compute than the ln x implementation in most

C libraries. This is clearly an approximation (figure 3.21) since it tends to 2
relatively quickly.
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Figure 3.21: The growth of ln x versus 2x−1
x+1



4. Evaluation

Completing the implementation of any piece of software does not have any bearing
on whether or not it has succeeded at its intended purpose. This is especially
true for a visualisation.

The eventual visualisation operates as follows:

• The size of each graph node represents the amount of local time spent in
the function it represents. This is done proportionately so that two nodes
of the same size have accumulated the same quantity of run time over the
program’s execution.

• The colour of each graph node represents the number of times it has been
called. This is also proportionate. A colour map is used from blue through
to purple through to red. For example a node which is blue has been called
few times in relation to the total number of function calls made whereas a
node which is red has been called many times.

• The colour of each graph edge represents the number of times one function
called another. The colour uses the same colour map as with the graph
nodes.

• The transparency of graph nodes and edges indicates the activity of a func-
tion. A largely transparent graph node represents a function which has not
been active for some time as opposed to a totally opaque graph node which
has been active very recently.

• Both graph nodes and edges are rendered with a dark shell around them if
they are currently active - in other words if they are on the call stack.

• Each graph node is annotated to the right with the name of the function it
represents. This text is distance culled to prevent both over-crowding and
the associated computational cost of rendering the text.

Edge scaling was not used in the final visualisation primarily because there is
only a single continuous variable (number of calls) associated with every edge.
Furthermore, given the choice between colour and scaling, colour is far more
effective at conveying the information. Figures 4.1 and 4.2 show some screenshots
of rtprof visualising non-trivial programs.

43
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Figure 4.1: A visualisation of the computer game ‘Tuxracer’
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Figure 4.2: A visualisation of the computer game ‘xbill’
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4.1 Usage study

With any visualisation there is a subjective element governing whether or not
the visualisation effectively represents the underlying data as intended. A large
part of the assessment of the success of the project involves evaluating whether
or not this goal has been attained. In order to test for this a small usage study
was performed utilising a number of undergraduates and external test subjects.

This usage study consisted of a questionnaire in which respondents answered a
number of specific queries regarding the visualisation of a simple pathological
test program designed to illustrate the function and capability of the real time
profiling tool. The static call graph for this program was shown previously in
figure 3.7. This graph shows recursive, convergent and tree-like function call
formations. What it doesn’t show however is more specific elements of the profile
such as the number of calls or time elapsed in a function. The questionnaire
concentrated mainly on these elements of the profile. In addition the latter section
of the questionnaire asked more general questions regarding the opinion of the
subject with respect to the profiling tool. The questionnaire took the form of
an online web form with a results processing script written in PHP [31] which
stored results in a MySQL[32] table. This meant that the questionnaire could
be completed without the use of an Informatics computer system thus enlarging
the available sample space. Figures 4.3, 4.4, 4.5, 4.6 and 4.7 represent what each
respondent should be looking at when answering the associated questions:

Question 1. Which function is called the most times? The correct answer to this ques-
tion was six.
100% of the respondents chose the correct answer.

Question 2. Which function(s) call the function six? The correct answer to this question
was four and five.
100% of the respondents chose the correct answer.

Question 3. Of these function(s) which makes the most calls to six? The correct answer
to this question was five.
100% of the respondents chose the correct answer.

Question 4. A recursive function is one which calls itself. Identify one recursive func-
tion using the visualisation. The correct answer to this question was either
one or two.
100% of the respondents chose the correct answer.

The answers to questions 2 and 4 suggest that the program topology is
conveyed well by the visualisation.

Question 5. Which function is the most deeply recursive? i.e. which function calls itself
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Figure 4.3: The visualisation relevant to questions 1-6

the most times? The correct answer to this question was two.
100% of the respondents chose the correct answer.

The answers to questions 1, 3 and 5 suggest that the use of colour has been
very effective in conveying information; in this case number of calls.

Question 6. In which function has the program spent most time? The correct answer to
this question was six.
60% of the respondents chose the correct answer.
24% of the respondents thought the visualisation was ambiguous.
8% of the respondents answered main.
8% of the respondents answered two.

This was probably the most interestingly answered question. The question-
naire was presented in a form where no prior knowledge of profiling or call
graphs was required. In an effort to simplify the explanations given, the
distinction between total and local time (figure 2.4) was not covered. It is
conceivable that those with a computer science background will realise the
function with the greatest total time is main, yet the visualisation shows
six as accumulating the most (local) time. Having deduced this, the an-
swer given is either ambiguity or main. Clearly this explanation is purely
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Figure 4.4: The visualisation relevant to questions 7-8

conjecture, but it seems the likely case. There is no concrete explanation
as to why one respondent answered two.

At this point the respondent was asked to press six keys while the test program
was focused. This had the effect of creating six leaf functions in a tree structure
beneath the function seven.

Question 7. How many new functions have been called? The correct answer to this ques-
tion was 9.
68% of the respondents chose the correct answer.
16% of the respondents answered 6.
8% of the respondents answered 8.
8% of the respondents thought the visualisation was ambiguous.

In order to answer this question the respondent must have known how many
functions had been called before pressing the keys. Some of the respondents
incorrectly equated the number of key presses to the number of functions
called while others apparently miscounted. One respondent commented
that they had not counted how many functions had been called before
pressing the keys so answering this question was not possible. In hindsight
there is little information to be gained from the results of this question and
it should not have been posed.
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Figure 4.5: The visualisation relevant to question 9

Question 8. Which function is currently executing? In other words which function is on
top of the call stack? The correct answer to this question was seven.
84% of the respondents chose the correct answer.
16% of the respondents didn’t understand the question.

Question 9. Change to the test program and press the key i. What is the state of the
call stack the moment after you press this key? The correct answer to this
question was main→seven→eleven→thirteen.
84% of the respondents chose the correct answer.
8% of the respondents answered main→seven.
8% of the respondents didn’t understand the question.

The single respondent who answered main→seven probably did not observe
the visualisation momentarily after pressing the key. There was only a two
second window in which to observe the effects. In hindsight this delay
should have been slightly longer.

Question 10. Which function has now been called the most times? The correct answer to
this question was six.
54% of the respondents chose the correct answer.
30% of the respondents answered seven.
16% of the respondents thought the visualisation was ambiguous.
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Figure 4.6: The visualisation relevant to questions 10-11

This was a trick question to some extent since it is the same as question one
— and has the same answer. Surprisingly 30% of the respondents thought
the most called function was now seven, perhaps by confusing the activity
marker with the number of calls colour indication.

Question 11. In which function has the program now spent most time? The correct an-
swer to this question was seven.
76% of the respondents chose the correct answer.
8% of the respondents answered main.
8% of the respondents answered six.
8% of the respondents thought the visualisation was ambiguous.

This response was slightly surprising in that a greater proportion of the
respondents answered correctly than the previous question 6. The respon-
dent that answered main presumably assumed the representation of total
time as with question 6.

Question 12. What is the name of the function that last executed before the test program
closed? The correct answer to this question was ‘quit’.
100% of the respondents chose the correct answer.
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Figure 4.7: The visualisation relevant to question 12

The last two questions on the questionnaire asked were more general and answered
on a sliding scale. Firstly Do you consider the real time profiling tool to be useful?
The respondents answered with an average of 78% usefulness. This result was
satisfyingly high with most of the respondents answering 80% or higher. Secondly
the respondents were asked Regardless of your opinion of the usefulness of the
profiling tool, do you consider it to be ‘cool’?. The response to this question was
unanimously 100%. It appears if nothing else the profiling tool has succeeded in
impressing people!

Broadly speaking the usage study has provided some good evidence of the profil-
ing tool’s success. All of the questions posed were answered correctly by greater
than 50% of the respondents, while the average correct response was somewhat
higher. Section 2.2.2 discussed how two dimensional projections of three dimen-
sional space will tend to distort the apparent dimensions of the objects them-
selves. The usage study has highlighted this through the confusion in questions
regarding time. It is not clear whether this is solely due to the indistinction of
local and total time however, so this area deserves some more investigation. The
raw data for the usage study may be found in appendix E.
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4.2 Goals achieved

Section 1.3 outlined the high level objectives of the real time profiling tool. These
aims have been accomplished to a varying degree, but in general the project has
been a resounding success.

• The tool should be as portable as is realistically possible. Issues of portabil-
ity have been conscientiously considered throughout the development of the
profiling tool. It is predominantly portable, with one significant caveat —
currently both the instrumentation library and analysis program rely heav-
ily on the GNU tool chain, specifically GCC and binutils. Realistically this
can never be replaced by entirely portable tools, since compilers and low
level binary format manipulation libraries are necessarily somewhat archi-
tecture dependent. Providing the target platform has a compiler with some
means to instrument functions and resolve symbols however, it is possible
to modify the profiling tool such that platform specific dependencies are
exchanged at compile time by the C preprocessor.

• The tool should operate on a network transparent basis. The tool is en-
tirely network transparent with subtle provisos regarding the platform of
each machine involved in the profiling. Solutions for these annoyances are
discussed in section 4.4.3.

• The tool should present the data in an intuitive manner that is easy for
humans to interpret. This is definitely the most difficult goal to reason
about. Generally speaking the usage study indicates that this goal has
been achieved, but to what degree is subject to debate.

• The tool should be easy to use. The user interface for the visualisation is
not as intuitive as it could be. In the current iteration, the user must mem-
orise six keys and their respective functions. Navigating the graph can also
be difficult. More specifically finding the area of a program in which the
interest lies is not autonomous — the user must manually move the view-
point to find specific functions. As far as this preliminary version stands it
is sufficiently usable to be useful, but there is a great deal of improvement
that could be made in this area. Section 4.4.4 discusses improvements that
could be made to the user interface.

• The tool should be implemented sufficiently optimally to maintain interac-
tivity on relatively modest hardware. To some extent this is difficult to
evaluate since the definition of ‘modest hardware’ depends on the current
marketplace and architecture advances. Nevertheless the author’s 866Mhz
laptop with reasonable graphics hardware manages to maintain interactivity
(6 frames per second) for client programs with up to around 500 functions.
Clearly this will be somewhat reduced on systems relying on software ren-
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dering. Ultimately some data management is required. It is unlikely that
a user wishes to examine as mamy as 500 functions at once, so it would be
prudent to only render an interesting subgraph of the call graph in order
to boost interactivity.

• The tool should be reasonably configurable. The only means of configuration
available currently are options provided on the command line. These allow
the user to specify whether or not to use the call graph renderer at all,
where and if to write the GraphViz DOT file and which type of socket to
open. Section 4.4.7 discusses configuration issues.

• The tool must be able to profile programs written in the C language at a
minimum. Such programs should not need any modification in order to be
profiled. The tool has been shown to work with many programs written
in C. However it is difficult to prove that the profiler will work with every
C program. Nevertheless the instrumentation library was designed from
the outset to have a low impact on the client program and thus is unlikely
to cause problems. In contrast an accepted profiler, FunctionCheck imple-
ments must of its functionality directly from the instrumentation functions,
rather than in a separate process. The C program does not need direct
modification to be profiled, although it must be compiled specially. This is
necessary with any profiling tool without resorting to virtualisation.

4.3 Impact on the client program

“The procedure of measurement has an essential influence on the con-
ditions on which the very definition of the physical quantities in ques-
tion rests...”

Figure 4.8: Niels Bohr’s 1935 postulate

In 1935 Niels Bohr famously proclaimed that it is impossible to measure some-
thing without affecting it in some way (figure 4.8). His comments referred to
quantum mechanics, but they nevertheless still apply to many other things, in-
cluding the real time profiling tool. In this case the profiling tool has a detrimental
effect on the performance of the client program. There are three variables that
affect this. Firstly and most importantly, the rate at which the analysis program
consumes events. Secondly, the rate at which events are transferred between the
instrumentation library and the analysis program. Finally, the rate at which the
client program generates events.

Ideally the rate at which the analysis program consumes events is both maximal
and constant. A constant rate is important so that the measurement penalty
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incurred by consuming each event does not affect the real times measured by the
instrumentation library inconsistently. The event transfer rate depends on the
socket type and the communication channel used. With current CPU speeds, at
least a 100Mbit/s network interface is necessary for event transfer rate to have a
minimal effect on the profile produced. The rate at which the events are produced
depends entirely on the client program. Assuming the socket queue is a constant
size, the client program is able to produce events as often as it likes, minus a
penalty for each instrumentation function.

Due to the number of variables involved, the effect that profiling a program has
on its speed is not easy to define in general. For a program with a very high rate
of function calls, it may run as slow as 10% of the unprofiled speed. Similarly
a program with a very low rate of function calls it likely to run at a speed very
close to that of the same program without profiling.

4.4 Potential improvements

The real time profiling tool is already useful and usable to an extent, but the
developmental possibilities that could be explored have by no means been ex-
hausted.

4.4.1 Extension to other languages

The profiling tool has been implemented in C and is intended for profiling pro-
grams written in C, but there is essentially no reason why any procedural lan-
guage for which there is a GCC frontend cannot be profiled. This claim remains
unproven however. Object orientated languages can be profiled using the profil-
ing tool but the resultant profile is unlikely to be very useful. This is especially
apparent with the C++ frontend of GCC. The nature of object orientated pro-
gramming implies a great deal of compiler transformation. GCC introduces a
large quantity of name space mangling into C++ programs such that while a
profile for a C++ program may be correct, getting any useful information from
it in relation to its source code is close to impossible. This is not a problem
specific to the real time profiling tool, gdb and other GNU tools are known to
have serious problems with C++ based programs.

Without the realms of GCC, extension to other languages is certainly possible
assuming the compiler used provides some means to instrument a program at a
source code level. Microsoft compilers certainly have the ability to instrument
functions, though this has not been explored in any great depth.
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4.4.2 Profiling improvements

4.4.2.1 Instantaneous profiling

The profile as generated is constructed cumulatively from when the client pro-
gram starts until the point at which it exits. From the perspective of a real time
profiling tool, this is of dubious use. For example, a program used to visualise
terrain might do a large quantity of preprocessing on some input mapping data,
then visualise the result of this processing. Depending on how long the visu-
alisation is run for, with a traditional profiler such as gprof, the preprocessing
stage of the program will dominate the profile. This is also the case with the real
time profiling tool in its current state. If the purpose of profiling this program
is to improve the efficiency of the visualisation stage, this data is less accessible
from the generated profile since it is overshadowed by the preprocessing stage.
This information is still present in the profile, but the resolution at which it is
observable has been greatly reduced.

Instead of generating a profile for a programs entire run, a profile may be gen-
erated for some recent time window of the program. In this case the previous
activities of a program (in the example the preprocessing stage) will have no bear-
ing on the current state of the profile. However in order to do this, a cumulative
approach to building the profile in no longer possible since data generated at the
beginning of the profile must be removed as the time window advances. Alter-
natively a history of events could be kept and the profile continually regenerated
as the time window advances. Obviously this is potentially relatively computa-
tionally intensive and may impact the overall interactivity of the profiling tool,
so this time window would only be effective for relatively short periods of time.
Nevertheless this is an interesting avenue to explore and is genuinely likely to
increase the usefulness of the profiling tool.

4.4.2.2 Predictive profiling

The real time profiler is intended for examining the operation of processes which
do not block frequently. This intention is reflected in the asynchronous paradigm
used to collect profile data. The profile is only updated when a function is called
or exits. In the case of a program that blocks, the profile stored in memory is
inaccurate until such an event occurs since the function times are not incremented.

Although it is not the intention of the tool to be used to profile blocking processes,
it is clearly a positive feature. When a process blocks, the analysis program no
longer has reliable data regarding the status of time spent within a function since
there are no events to be processed. However, the analysis program maintains
its own real time clock and as such is able to infer that a function currently



56 4. EVALUATION

marked as being on top of the call stack is still accumulating time if there is no
corresponding function exit event queued for it.

In this state the analysis program can ‘predict’ the accumulation of the function’s
local time using its local clock up until the point a new event arrives. When this
occurs the predicted time accumulation is rolled back and the profile is updated
with the concrete data garnered from the event.

4.4.3 Network improvements

It is potentially dangerous to send raw binary data on a socket stream. This
is because the endianess of the host architectures may differ and the receiving
host may interpret the data in the wrong order. In the case of the current
implementation of the network layer however, this consideration is not observed.
Instead the event struct itself is sent on the socket. The ramifications of this
are that both hosts involved in the profiling must be the same platform.

In addition to the endianess issues, the byte alignment and packaging of a struct

are likely to differ between diverse platforms. To guarantee successful data trans-
fer between two different platforms, an extra lower level must be implemented.
This layer ‘marshalls’ binary data into a platform independant network centric
form and ‘unmarshalls’ the data at the receiving end. In terms of implementation
this is accomplished with the functions htonl, htons, ntohl and ntohs. These
are used to convert between the host’s byte ordering and a constant network
ordering (most significant byte first). This extension is important to ensure the
profiling tool’s portability.

4.4.3.1 Efficiency improvements

Figure 3.3 shows the struct representing an event. With struct bit packing
enabled, this has size 13 bytes. When profiling a program that might generate
many thousands of events every second the amount of data transferred becomes a
critical factor in the overall efficiency of the profiler. Of this 13 bytes, 8 are a time
stamp which takes the form of the number of µ-seconds since the Epoch (00:00:00
UTC, January 1, 1970). This form of date storage is forecast to roll over in 2038.
It is highly improbable that anybody using the profiling tool will need 35 years
worth of date storage so there is clearly some room for improvement here. Two
strategies present themselves. Instead of transferring time stamps in Epoch form,
time stamps could be transfered that reflect the time since the client program
was started. In this case the storage requirements could be greatly reduced to
some realistic bound. Alternatively the time stamp could be replaced by another
value that represented the time since the last event.
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4.4.3.2 Client side symbol resolution

In order to get any meaningful information from the profiling tool the symbols
from the binary file of the client program must be resolved into human readable
function names. In the current implementation this is performed by the analy-
sis program based from the binary filenames it is passed on the command line.
In the case where the profiler is being used remotely, the machine running the
analysis program does not necessarily have access to the binary file which is be-
ing profiled. Often this file needs to be copied to the visualisation machine for
the symbols to be resolved. At best this is an inconvenient annoyance, but it
is potentially resolvable. By moving the resolution stage to the instrumentation
library and devising some means of communicating each function name to the
analysis program, it no longer needs to be aware of the binary file at all. However
this change flies in the face of the requirement to maintain a simple, lightweight
instrumentation library. In this case the dependency on libbfd is moved from the
analysis program to the instrumentation library.

4.4.4 UI improvements

4.4.4.1 Colour map scale

In the case of a simple colour map that blends from one colour to another, it is
relatively clear what a specific colour represents in terms of scale. However for
a more complex colour map it would be a useful addition to the user interface
to have a colour map scale rendered to the screen. In this instance if there is
any confusion regarding the meaning of some specific colouring, then it can be
compared with the colour map scale.

4.4.4.2 Control instructions

A comment made in the usage study proclaimed that remembering which keys
to use to navigate the call graph is difficult. A quick reference could be rendered
to the screen either permanently or by popup, although in this case which key is
used to activate this is a problem.

4.4.4.3 Function details

While the visualisation accurately reflects the profile as it is stored in memory,
on its own it provides no numerical data. A possible user interface improvement
is to display concrete textual data for the function or edge directly infront of
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the viewer. In order to accomplish this some tracing mechanism is required.
Tracing means to fire rays into the physical simulation and test for intersection
with objects. Each object therefore requires volume. In the case of the graph
nodes this is simply a case of testing for the intersection of a line (the trace)
with a sphere (the graph node). Edges are harder since the cylindrical bounding
volume is not necessarily axis aligned, but clearly still possible albeit slightly
more computationally expensive. This test for intersection need not occur every
frame or involve every graph glyph, so it can be made very efficient.

4.4.5 Scheduler improvements

Section 3.1.2.2 discussed the reasons behind using non-blocking sockets. With
this approach the visualisation and the profile generation are scheduled internally
within the analysis program. In the current implementation the scheduler is
somewhat näıve. For every ten thousand events (assuming ten thousand are
queued) the program will render a single visualisation frame. This is effectively
a heavily weighted round robin scheduler. In practice this doesn’t work very well
— while the client program is still running interaction with the visualisation is
rather choppy and unresponsive. A better scheduler might take real time into
consideration and provide a loose guarantee for frames per second rendered.

4.4.6 Adaptive layout

The human vision system is a trichromatic integrator. The bandwidth of this
system is typically accepted to be in the region of 70-80Hz. This means that
beyond this data rate i.e. 70-80 frames per second, a human being is unable
to appreciate very much difference in frame rate. In actual fact in order for
movement to appear continuous only a frame rate of around 25 per second is
necessary. Depending on the graphics hardware used, the visualisation often
renders the call graph in excess of 80 frames per second, especially with smaller
programs.

Instead of using CPU time to needlessly increase the frame rate, it could be
diverted to the graph layout algorithm. In this case if the frame rate passed
some upper threshold an extra iteration of the layout could be performed. If
the frame rate is still above this threshold at some later point the layout will
perform yet more iterations. This process continues until the frame rate is below
the upper threshold. At this point the layout and the visualisation have been
‘balanced’ such that the visualisation is rendering as often as necessary and the
layout algorithm is iterating as often as possible, the result of which being the
graph layout will be performed quicker.
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The same principle can also be applied in reverse. If the visualisation has passed a
lower bound of frame rate whereby the interactivity has dropped to unacceptable
levels, an iteration of the graph layout can be skipped thereby increasing the
overall framerate but slowing down the progress of the graph layout.

4.4.7 Configuration

4.4.7.1 Remappable variables

As it currently stands the mapping of profile variables to visualisation channels is
static and can only be altered at compile time. By having a configuration means
whereby any variable can be mapped to any compatible visualisation channel
the flexibility of the profiling tool is increased. For example it might be that
while observing the profile of some program you do not care about the number
of calls made to a function and instead wish to apply local time proportion to
the superior colour visualisation channel rather than node scale.

4.4.7.2 Remappable keys

The default keys used to control navigation within the visualisation are sensible,
but not necessarily to every persons taste. The ability to remap each control to a
different key potentially increases the usability of the program for many people.
This extension should be implemented in combination with section 4.4.4.2.

4.4.7.3 User defined colour maps

The default colour map ranges from blue (0.0, 0.0, 1.0) to red (1.0, 0.0, 0.0). Using
this colour map interim values between the minimum and maximum scaling are
relatively indistinct. By using a colour map which interpolates between a larger
number of colours the resolution of the colour map is effectively increased. At
a glance however, this colour map will be harder to interpret than a simpler
equivalent. If the colour maps are user definable the benefits of both worlds are
reaped since the user is able to choose a colour map to use based on the nature
of the profile being generated.
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5. Conclusion

The underlying goal of the project was to create a profiling tool which is capable
of measuring a program while it is still running. In addition to this the tool
was to present the generated profile graphically in a form easy to interpret by
humans.

The first of these goals has been achieved. In this case the real time profiling tool
is genuinely unique — there is no comparable tool available for the Linux platform
that is able to profile a running process in this way. In comparison to existing
profiling tools, the profile generated by the real time profiling tool offers little
extra other than the ability to watch it as it is beginning constructed. However the
ground work is there to produce potentially more useful instantaneous profiling
information as described in section 4.4.2.1.

The call graph and profile renderer has also been a success. The resultant visual-
isation is both efficient and accurate. In terms of data representation the graph
topology is incontrovertibly correct. The representation of the actual profile data
proper is harder to evaluate, but the usage study performed suggests positive
results.

Development of the real time profiling tool has reached a stage where it is al-
ready useful. However, it is by no means at an end. There are multiple avenues
of interest still to be explored and many possibilities for extension to the project.
It is conceivable that specific elements of the visualisation are potentially useful
in fields other than profiling, perhaps visualisation of network usage (c.f. Ether-
ape[33]).

In addition to the completion of the real time profiling tool, this project has
satisfied a peripheral goal. Through its development, the author has learnt and
become proficient in the use of OpenGL and other related libraries. Furthermore
the development of the real time profiling tool has been a pleasant and satisfying
experience.
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Appendix A. Instrumentation

functions

/*

===============

__cyg_profile_func_enter

Instrumentation function called on entry

===============

*/

void __cyg_profile_func_enter( void *this_fn, void *call_site )

{

if( connection < 0 && !attemptedConnection )

{

attemptedConnection = true;

if( ( connection = connectToRtprof( ) ) < 0 )

fprintf( stderr, "WARNING: librtprof cannot connect to rtprof\n" );

else

atexit( disconnectFromRtprof );

}

if( connection >= 0 )

{

gettimeofday( &tv, NULL );

fe.type = EV_ENTER;

fe.this_fn = this_fn;

fe.ts = tv.tv_sec * 1000000 + tv.tv_usec;

if( sendFE( connection, fe ) < 0 )

{

disconnectFromFailedRtprof( );

fprintf( stderr, "WARNING: could not send to rtprof; disconnected\n" );

}

}

}

63



64 APPENDIX A. INSTRUMENTATION FUNCTIONS

/*

===============

__cyg_profile_func_exit

Instrumentation function called on exit

===============

*/

void __cyg_profile_func_exit( void *this_fn, void *call_site )

{

if( connection >= 0 )

{

gettimeofday( &tv, NULL );

fe.type = EV_EXIT;

fe.this_fn = this_fn;

fe.ts = tv.tv_sec * 1000000 + tv.tv_usec;

if( sendFE( connection, fe ) < 0 )

{

disconnectFromFailedRtprof( );

fprintf( stderr, "WARNING: could not send to rtprof; disconnected\n" );

}

}

}



Appendix B. Event handler

/*

===============

serviceConnection

Function to service a librtprof connection

maxEvents is the maximum number of events to read this call

===============

*/

boolean serviceConnection( int connection, callStack_t *s,

graph_t *g, int maxEvents )

{

static functionEvent_t fe;

static int size = 0;

boolean clientConnected = true;

graphNode_t *parent, *child;

graphEdge_t *edge;

void *parentSymbol;

stackFrame_t sf, *sfp;

timeStamp_t ts, delta;

int count = 0;

int eventCount = 0;

graphNode_t **nodes;

graphEdge_t **edges;

int numNodes, numEdges;

int i;

//while there are events to be processed read from the socket

while( ( size = readFromConnection( connection, size, &fe ) ) == SFE &&

eventCount++ < maxEvents )

{

child = parent = NULL;

parentSymbol = NULL;

assert( size == SFE );

size = 0;

//deal with the event

switch( fe.type )

{

case EV_ENTER:

if( !emptyStack( s ) )

{

sfp = peekStack( s );

if( ( parent = searchNodes( sfp->symbol, NULL, g ) ) != NULL )

{

delta = ( fe.ts - sfp->calleeExitTime );

parent->totalTime += delta;

if( parent->totalTime > g->maxTotalTime )

g->maxTotalTime = parent->totalTime;

g->totalTotalTime += delta;

parent->localTime += delta;

if( parent->localTime > g->maxLocalTime )
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g->maxLocalTime = parent->localTime;

g->totalLocalTime += delta;

}

sfp->calleeEntryTime = fe.ts;

parentSymbol = sfp->symbol;

}

sf.symbol = fe.this_fn;

sf.calleeExitTime = fe.ts;

pushStack( sf, s );

if( ( child = searchNodes( sf.symbol, parentSymbol, g ) ) != NULL )

{

g->totalCalls++;

child->calls++;

child->active = true;

child->lastActive = getusecs( );

if( child->calls > g->maxNodeCalls )

g->maxNodeCalls = child->calls;

if( parent != NULL )

{

edge = searchEdges( parent, child, g );

edge->calls++;

edge->active = true;

edge->lastActive = child->lastActive;

if( edge->calls > g->maxEdgeCalls )

g->maxEdgeCalls = edge->calls;

}

}

break;

case EV_EXIT:

if( !emptyStack( s ) )

{

sf = popStack( s );

if( ( child = searchNodes( sf.symbol, NULL, g ) ) != NULL )

{

delta = ( fe.ts - sf.calleeExitTime );

child->totalTime += delta;

if( child->totalTime > g->maxTotalTime )

g->maxTotalTime = child->totalTime;

g->totalTotalTime += delta;

child->localTime += delta;

if( child->localTime > g->maxLocalTime )

g->maxLocalTime = child->localTime;

g->totalLocalTime += delta;

child->active = false;

child->lastActive = getusecs( );

}

if( !emptyStack( s ) )
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{

sfp = peekStack( s );

if( ( parent = searchNodes( sfp->symbol, NULL, g ) ) != NULL )

{

delta = ( fe.ts - sfp->calleeEntryTime );

parent->totalTime += delta;

if( parent->totalTime > g->maxTotalTime )

g->maxTotalTime = parent->totalTime;

g->totalTotalTime += delta;

edge = searchEdges( parent, child, g );

edge->active = false;

edge->lastActive = getusecs( );

}

sfp->calleeExitTime = fe.ts;

}

}

break;

case EV_PROCEXIT:

close( connection );

close( serverSocket );

clientConnected = false;

break;

default:

break;

}

}

ts = getusecs( );

nodes = listNodes( SF_NONE, &numNodes, g );

edges = listEdges( &numEdges, g );

g->maxInactiveTime = 0;

for( i = 0; i < numNodes; i++ )

{

nodes[ i ]->inactiveTime = ts - nodes[ i ]->lastActive;

if( nodes[ i ]->inactiveTime > g->maxInactiveTime )

g->maxInactiveTime = nodes[ i ]->inactiveTime;

nodes[ i ]->localTimeFraction = (float)nodes[ i ]->localTime /

(float)g->totalLocalTime;

nodes[ i ]->totalTimeFraction = (float)nodes[ i ]->totalTime /

(float)g->totalTotalTime;

nodes[ i ]->callsFraction = (float)nodes[ i ]->calls /

(float)g->totalCalls;

}

for( i = 0; i < numEdges; i++ )

{

edges[ i ]->inactiveTime = ts - edges[ i ]->lastActive;

if( edges[ i ]->inactiveTime > g->maxInactiveTime )

g->maxInactiveTime = edges[ i ]->inactiveTime;
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edges[ i ]->callsFraction = (float)edges[ i ]->calls /

(float)g->totalCalls;

}

free( edges );

free( nodes );

return clientConnected;

}



Appendix C. GraphViz DOT

language

graph : [ strict ] (graph | digraph) [ ID ] ’{’ stmt_list ’}’

stmt_list : [ stmt [ ’;’ ] [ stmt_list ] ]

stmt : node_stmt

| edge_stmt

| attr_stmt

| ID ’=’ ID

| subgraph

attr_stmt : (graph | node | edge) attr_list

attr_list : ’[’ [ a_list ] ’]’ [ attr_list ]

a_list : ID [ ’=’ ID ] [ ’,’ ] [ a_list ]

edge_stmt : (node_id | subgraph) edgeRHS [ attr_list ]

edgeRHS : edgeop (node_id | subgraph) [ edgeRHS ]

node_stmt : node_id [ attr_list ]

node_id : ID [ port ]

port : port_location [ port_angle ]

| port_angle [ port_location ]

port_location : ’:’ ID

| ’:’ ’(’ ID ’,’ ID ’)’

port_angle : ’@’ ID

subgraph : [ subgraph [ ID ] ] ’{’ stmt_list ’}’

| subgraph ID

69



70 APPENDIX C. GRAPHVIZ DOT LANGUAGE



Appendix D. Colour map

generation function

/*

===============

buildLerpCTable

Build a colour table by interpolating between a

number of discrete colours

===============

*/

void buildLerpCTable( vec4_t *colours, int numColours )

{

int i;

int numRanges = numColours - 1;

int range;

float rangeSize = (float)MAX_CTABLE_ENTRIES / (float)numRanges;

float scale;

vec4_t from, to;

if( numColours < 2 )

return;

for( i = 0; i < MAX_CTABLE_ENTRIES; i++ )

{

range = (int)floor( (float)i / rangeSize );

Vector4Copy( colours[ range ], from );

Vector4Copy( colours[ range + 1 ], to );

scale = (float)( i % (int)rangeSize ) / rangeSize;

if( scale < 0.0f )

scale = 0.0f;

else if( scale > 1.0f )

scale = 1.0f;

colourTable[ i ][ 0 ] = ( ( 1.0f - scale ) * from[ 0 ] + scale * to[ 0 ] );

colourTable[ i ][ 1 ] = ( ( 1.0f - scale ) * from[ 1 ] + scale * to[ 1 ] );

colourTable[ i ][ 2 ] = ( ( 1.0f - scale ) * from[ 2 ] + scale * to[ 2 ] );

colourTable[ i ][ 3 ] = ( ( 1.0f - scale ) * from[ 3 ] + scale * to[ 3 ] );

}

}
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Appendix E. Usage study raw

data
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